Why MAC Address Randomization is not Enough: An Analysis of Wi-Fi Network Discovery Mechanisms

Mathy Vanhoef[†], <u>Célestin Matte[‡]</u>, Mathieu Cunche[‡], Leonardo S. Cardoso[‡], Frank Piessens[†]

[†] iMinds-Distrinet, KU Leuven , [‡]Univ Lyon, INSA Lyon, Inria, CITI, France, Région Rhône-Alpes funding

AsiaCCS - June 1st 2016

Introduction - Wi-Fi service discovery

- Wi-Fi infrastructure mode is asymmetric: access point (AP, "server") and stations (STA) ("clients")
- Stations discover APs by either:
 - listening for incoming beacon frames (passive mode),
 - sending probe request frames (active mode).
 - Less energy-consuming
 - Containing a unique identifier: the MAC address

Introduction - Tracking

- What: getting the knowledge of a device's presence over time
- Who: businesses, intelligence services, nasty neighbours, employers...
 - Many retail tracking start-ups: Nomi, Euclid, Purple WiFi...
- Privacy issue: no consent nor awareness

- MAC address randomization proposed to prevent tracking
 - Being deployed in major OSes
 - iOS 8, Android 6, Windows 10, Linux kernel 3.18
- Is it enough to prevent tracking ?
- Maybe not. We show that:
 - Probe requests contain a lot of other information that can be used to fingerprint devices
 - Probe requests contain predictable fields
 - We can force a device to reveal its real MAC address through active attacks
 - All of this allows an attacker to track devices without the use of a stable link-layer identifier

Introduction - attacker model

- Attacker capabilities
 - Monitoring wireless channels
 - Injecting 802.11 frames (for active attacks only)
- Attacker objectives
 - Tracking devices
 - $\bullet\,\equiv\,{\rm Group}$ frames belonging to the same device
- Link-Layer identifier is assumed to change periodically

Table: Details of the probe requests datasets.

Dataset	Lab	Train-station	Sapienza ¹
#MAC addr.	500	10 000	160 000
#Probe Req.	120 000	110 000	8 million
Time frame	Oct '15	Oct/Nov '15	Feb/May '13
Location	Lab	Train Station	Rome

¹sapienza-probe-requests-20130910.

Part 1/4: Information Elements

- Reminder: Wi-Fi service discovery of (unassociated) devices
- Information elements (a.k.a. tagged parameters, or tags)
 - Indicates the support of capabilities
 - Ex. Supported Rates, High Throughput capabilities and Interworking Capabilities
- High diversity in term of values and in term of information elements present in probe requests
 - Idea: Exploit this diversity to fingerprint devices

Fingerprinting using Information Elements

Tag: HT Capabilities (802.11n D1.10) Tag Number: HT Capabilities (802.11n D1.10) (45) Tag length: 26 ▼HT Capabilities Info: 0x100c 11.. = HT SM Power Save: SM Power Save disabled (0x0003) 0 = HT Green Field: Transmitter is not able to receive PPDUs with Green Field (GF) preamble0.. = HT Short GI for 40MHz: Not supported 0... = HT Tx STBC: Not supported 0... = HT Max A-MSDU length: 3839 bytes ...1 = HT DSSS/CCK mode in 40MHz: Will/Can use DSSS/CCK in 40 MHz ..0. = HT PSMP Support: Won't/Can't support PSMP operation .0.. = HT Forty MHz Intolerant: Use of 40 MHz transmissions unrestricted/allowed 0... = HT L-SIG TXOP Protection support: Not supported ▼A-MPDU Parameters: 0x1901 = Maximum Rx A-MPDU Length: 0x01 (16383[Bytes]) ...1 10.. = MPDU Density: 8 [usec] (0x06) 000. = Reserved: 0x00 Rx Supported Modulation and Coding Scheme Set: MCS Set ▶HT Extended Capabilities: 0x0000 ▶ Transmit Beam Forming (TxBF) Capabilities: 0x0000 ▶Antenna Selection (ASEL) Capabilities: 0x00

Figure: Example of the HT_Extended_capabilities Information Element

Empirical evaluation using the datasets

- Considered metrics
 - Fraction of affected devices
 - Entropy: amount of identifying information
- Single Information Elements
 - Can provide up to 5.24 bits of entropy
 - Stable for more than 95% of the devices (no change over time)
 - Some IE are found in almost all devices (Supported rates)
 - Ex. HT capabilities info (Train-station dataset) : 4.74 bits of entropy, 90% of devices affected, stable for 95.9% devices
- Global fingerprint (most common IEs)
 - Entropy : 7.03 bits (Train-station)
 - Enough to uniquely identify 1 device among 128 (on average)

See full details in Table 2 of the paper.

Fingerprinting using Information Elements

- Wi-Fi Protected Setup (WPS)
 - Information element dedicated to WPS
 - Includes a UUID field
 - Universally Unique Identifier UUID
 - A unique identifier by definition
 - Generally derived from the MAC address²
 - Could be reversed to reveal the original MAC
 - Re-identification attack on the datasets
 - UUID derived from the real Wi-Fi MAC address in 75% of the cases

²rfc4122.

Vanhoef, Matte, Cunche et al. Why MAC A

AsiaCCS - June 1st 2016

11 / 25

Part 2/4: Predictable fields

Predictable fields

- Predictable fields in 802.11 frames
 - Fields with a content that can change over time
 - Value in a given frame can be predicted from the previous frames
 - Example: Sequence Number field
 - Incremented for each frame
 - Not reset when MAC address is changed in iOS³
 - Can be used to trivially defeat MAC address randomization

62.303819	d2:cc:8c:c8:94:1a	Broadcast	802.11	131 Probe	Request,	SN=2609,
62.359162	d2:cc:8c:c8:94:1a	Broadcast	802.11	131 Probe	Request,	SN=2610,
78.282951	f6:0b:d9:19:9a:eb	Broadcast	802.11	141 Probe	Request,	SN=2617,
78.284922	f6:0b:d9:19:9a:eb	Broadcast	802.11	142 Probe	Request,	SN=2618,
78.286251	f6:0b:d9:19:9a:eb	Broadcast	802.11	152 Probe	Request,	SN=2619,
78.287718	f6:0b:d9:19:9a:eb	Broadcast	802.11	145 Probe	Request,	SN=2620,

Figure: Example of a device not resetting its sequence number counter when changing its MAC address

Vanhoef, Matte, Cunche et al. Why MAC Address Randomization is not ...

AsiaCCS - June 1st 2016 13 / 25

³freudiger-wisec2015.

Predictable scrambler seed

- Scrambler in OFDM frames of 802.11 PHY
 - Used to improve frame retransmission
 - Seed contained in the 7 first bits of SERVICE field
 - Seed should be different for each frame

- Scrambling sequence generated by a Linear Feedback Shift Register (LFSR)
 - Seed sets the initial state of LFSR

- Scrambler seeds can be predictable
 - Bloessl et al. showed that it is the case for two prototype implementation of 802.11p⁴ (vehicular networks)

- Possible because no specification in the standard on how to generate the seeds
- Implementation choice taken by the vendor
- What about commodity 802.11 implementations ?

⁴bloessl-icnc2015.

Predictable scrambler seed

- Study of scrambler seeds in 802.11 commodity hardware
 - Wait, it's a physical layer field
 - Experimental setup
 - GNU-Radio implementation of 802.11 based on gr-ieee802-11⁵
 - USRP N210
 - (awesome) Faraday room from FIT CortexLab⁶
 - 11 Wi-Fi commodity hardware

⁵srif-bloessl2013.

⁶http://www.cortexlab.fr/

Vanhoef, Matte, Cunche et al.

- Observed behaviors
 - Constant seed, or limited to a small set (bug ?)
 - Incremental: seed value is incremented by one at each frame
 - Freewheeling: State of the LFSR at the end of a frame is reused for the next frame
- Same as 802.11p: this field can be used to group frames

Part 3/4: Tracking algorithm

- Tracking algorithm:
 - Aim: group probe requests from the same device
 - Use IE fingerprints to create clusters
 - Distinguish devices within these clusters using predictable fields

Tracking algorithm

- Performances:
 - Strict evaluation conditions: a device is correctly tracked if its frames are grouped in a single cluster containing no frame from other devices
 - Remove obvious identifiers (WPS, SSIDs list)
 - We manage to track 30% of devices during 20 minutes beyond 64 concurrent devices

Part 4/4: Active attacks

Active attacks

Aim: force a device to reveal its actual MAC address

- Karma attack
 - Method:
 - Create fake APs with popular SSIDs (network names)
 - Trigger authentication/association from STA
 - STA switch back to their real MAC when connecting to AP
 - Experiment:
 - Broadcast beacons for the top-5 known SSIDs at the train station
 - Triggered association requests for 17.4% of seen devices

• Exploiting Hotspot 2.0

- Method:
 - Enable Wi-Fi roaming
 - STA sends ANQP queries to AP to retrieve list of available services
 - (We show that) STA switches back to their real MAC address when querying
 - Queries also contain predictable counter that could help tracking
- Experiment:
 - Deployed a fake HS2.0 AP at the train station during two 20-minute sessions
 - 5.25% and 16.37% of stations sent AQNP queries.

• Information elements in probe requests

- Are they really needed? Before association?
- In all frames by default
- Remove them or restrict to a bare minimum
- Scrambler seed and other predictable fields
 - Reset to a random value upon MAC address change
 - Unpredictable scrambler seeds
 - Use a crypto PRNG to generate seeds
 - Or chipsets allowing a reset of the seed
- Active attacks
 - HS2.0: Keep random MAC address when sending ANQP queries
 - Use a pseudonym MAC address for associations (Windows 10 model: one pseudonym per network)

Conclusion

Context:

- MAC address randomization during Wi-Fi service discovery deployed to prevent tracking
- Is it enough?

We showed that:

- Probe request frames contain enough information to fingerprint devices
- Probe request frames contain predictable fields
- Active attacks can reveal the original MAC address

Discussion:

- Not enough specifications, too many details left to vendors' decision
- Privacy not taken into account in specifications
- IEEE 802 privacy study group⁷

⁷http://www.ieee802.org/PrivRecsg/

Element	Entropy (bits)		Stability		Affected devices				
	Lab	Station	Sapienza	Lab	Station	Sapienza	Lab	Station	Sapienza
HT capabilities info	3.94	4.74	3.35	96.0%	95.9%	99.6%	90.9%	90.0%	81.1%
Ordered list of tags numbers	4.23	5.24	4.10	93.6%	94.2%	91.2%	100%	100%	100%
Extended capabilities	2.59	2.57	0.064	98.5%	99.4%	99.9%	55.4%	51.3%	0.6%
HT A-MPDU parameters	2.59	2.67	2.54	97.8%	99.1%	99.7%	90.9%	90.0%	81.1%
HT MCS set bitmask	1.49	1.43	1.16	97.6%	99.0%	99.9%	90.9%	90.0%	81.1%
Supported rates	1.18	2.10	1.36	98.2%	95.9%	99.8%	100%	99.9%	100%
Interworking - access net. type	1.08	1.11	0.006	99.6%	99.6%	100.0%	47.5%	46.1%	0.04%
Extended supported rates	1.00	1.77	0.886	98.0%	96.3%	99.4%	99.1%	72.6%	99.7%
WPS UUID	0.878	0.788	0.658	98.2%	99.2%	99.6%	8.4%	5.5%	3.6%
HT extended capabilities	0.654	0.623	0.779	97.8%	98.9%	99.9%	90.9%	90.0%	81.1%
HT TxBeam Forming Cap.	0.598	0.587	0.712	97.8%	98.9%	99.9%	90.9%	90.0%	81.1%
HT Antenna Selection Cap.	0.579	0.576	0.711	98.0%	98.9%	99.9%	90.9%	90.0%	81.1%
Overall	5.48	7.03	5.65	92.5%	90.7%	88.8%	-	-	-

Backup slide 2: algorithm results with scrambler seed

Figure: Performances of the tracking algorithm using the scrambler seed

Backup slide 3: algorithm results with scrambler seed

Figure: IE Anonymity sets (Lab, Train station, Sapienza)

Figure: SSID Anonymity sets (Lab, Train station, Sapienza)