
Defeating MAC Address Randomization Through
Timing Attacks

Célestin Matte†, Mathieu Cunche†, Franck Rousseau‡, Mathy
Vanhoefq

†Univ Lyon, INSA Lyon, Inria, CITI, France, Région Rhône-Alpes funding, ‡Grenoble Institute of Technology, LIG, France,
q iMinds-Distrinet, KU Leuven

WiSec’16 - July 18th 2016

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 1 / 20



1 Introduction

2 Defeating randomization using timing

3 Experiments and results

4 Conclusion

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 2 / 20



Introduction - Wi-Fi service discovery

Wi-Fi stations discover APs by sending probe request frames.

Containing a unique identifier: the MAC address

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 3 / 20



Introduction - Tracking

What: getting the knowledge of a device’s presence over time
Who: businesses, intelligence services, nasty neighbours, employers...

Many retail tracking start-ups: Nomi, Euclid, Purple WiFi...

Privacy issue: no consent nor awareness

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 4 / 20



Introduction

MAC address randomization proposed to prevent tracking
Being deployed in major OSes

iOS 8, Android 6, Windows 10, Linux kernel 3.18

Is it enough to prevent tracking ?

No: Fingerprints can be built using the content of probe requests1

Is it even necessary?

We show that:

Randomization can be defeated using an attack based on the timing of
probe requests
Fingerprints built using this attack are consistent over time

1Mathy Vanhoef et al. “Why MAC Address Randomization is not Enough: An Analysis of
Wi-Fi Network Discovery Mechanisms”. In: AsiaCCS. May 2016. url:
https://hal.inria.fr/hal-01282900.
Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 5 / 20

https://hal.inria.fr/hal-01282900


MAC address randomization scheme

MAC address randomization: many different implementations

How often does the MAC address change?

Linux: Every few bursts
iOS > 9: every few bursts (2-4), sometimes for every burst

→ Can we build a fingerprint with so few frames?

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 6 / 20



Introduction - attacker model

Attacker capabilities

Monitoring wireless channels
Single channel, single location

Attacker objectives

Tracking devices
≡ Group frames belonging to the same device

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 7 / 20



1 Introduction

2 Defeating randomization using timing

3 Experiments and results

4 Conclusion

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 8 / 20



Terminology

Burst: group of probe requests sent within 10ms

Burst set: group of bursts sent with the same MAC address

IFAT: Inter-Frame Arrival Time

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 9 / 20



Signature2

Cut time into bins

For each bin, store percentage of IFATs + average IFAT value

0 10 20 30 40 50 60

Percentage of probe requests

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e

2Jason Franklin et al. “Passive Data Link Layer 802.11 Wireless Device Driver
Fingerprinting.”. In: Usenix Security. Vol. 6. 2006.
Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 10 / 20



Distances

We need to define distances between temporal distributions

D1: basic distance3

D1AB =
∑

b∈B
(|PB

b − PA
b |+

(PA
b + PB

b )

2
∗ |MB

b −MA
b |)

D2: add inter-burst set arrival time

D3: hybrid distance between D1 and D2 (do not give strong credit
to inter-burst set arrival time)

3Jason Franklin et al. “Passive Data Link Layer 802.11 Wireless Device Driver
Fingerprinting.”. In: Usenix Security. Vol. 6. 2006.
Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 11 / 20



Algorithm

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 12 / 20



Algorithm

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 12 / 20



Algorithm

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 12 / 20



Algorithm

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 12 / 20



Algorithm

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 12 / 20



Algorithm

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 12 / 20



1 Introduction

2 Defeating randomization using timing

3 Experiments and results

4 Conclusion

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 13 / 20



Experiments and results - dataset

Dataset: 120 000 probe requests sent by 550 devices @lab, 6 days

Simulate random MAC addresses

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 14 / 20



Experiments and results - metrics

Accuracy: ratio of correct decisions

TPR: number of burst sets from devices using random MAC
addresses correctly grouped together, over the number of burst sets
from devices using random MAC addresses

FPR: number of burst sets incorrectly grouped with burst sets from
other devices, over the total number of burst sets

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 15 / 20



Experiments and results - performance

(after parameters selection)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
r
u
e
 P

o
s
it

iv
e
 R

a
t
e

D1

D2

D3

Figure: ROC curve of the three distances, over the range of threshold values.

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 16 / 20



Results summary

(After parameters selection)

Table: Results of the attack with the best parameters and options.

Distance Accuracy TPR FPR

D1 66.8% 74.1% 24.3%

D2 77.2% 64.0% 0.6%
D3 71.8% 75.2% 17.5%

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 17 / 20



1 Introduction

2 Defeating randomization using timing

3 Experiments and results

4 Conclusion

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 18 / 20



Countermeasures

Changing the MAC address more often, every burst/frame

Random delay between probe and between bursts

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 19 / 20



Conclusion

Context:

MAC address randomization during Wi-Fi service discovery deployed
to prevent tracking

Is it enough?

We showed that:

Randomization can be defeated using an attack based on the timing
of probe requests

Fingerprints built using this attack are consistent over time

Discussion:

The content of the probe requests is not even necessary to track
devices

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 20 / 20



Experiments and results - distance metric evaluation

Distance of probe requests from same device vs. distance of probe
requests from different devices

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Distance

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n
 o

f 
p
a
ir

s
 o

f 
b
u
rs

t 
s
e
ts

Burst sets from the same device

Burst sets from different devices

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 20 / 20



Experiments and results - Stability

Select probe requests separated by chosen time difference

Compute distance

1min 5min 30min 1h 1d 10d 50d

Time difference between burst sets

0.0

0.5

1.0

1.5

2.0

2.5

A
v
e
ra

g
e
 d

is
ta

n
c
e

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 20 / 20



Algorithm

Algorithm 1: Random MAC breaking

Input: G: groups of burst sets, grouped by MAC address
t: distance threshold
d: a distance function

Returns: A: dictionary of aliases

A ← ∅
D ← ∅ // Database of signatures

foreach B ∈ G do

S ← signature(B)
dmin ← min(d(S,S ′) where S ′ ∈ D)
if dmin < t then
A[B.mac]← A[S ′.mac] // Alias

else
A[B.mac]← B.mac // New MAC address

end
D ← D ∪ S

end

return A

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 20 / 20



Algorithm

Algorithm 2: Random MAC breaking

Input: G: groups of burst sets, grouped by MAC address
t: distance threshold
d: a distance function

Returns: A: dictionary of aliases

A ← ∅
D ← ∅ // Database of signatures

foreach B ∈ G do

S ← signature(B)
dmin ← min(d(S,S ′) where S ′ ∈ D)
if dmin < t then
A[B.mac]← A[S ′.mac] // Alias

else
A[B.mac]← B.mac // New MAC address

end
D ← D ∪ S

end

return A

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 20 / 20



Algorithm

Algorithm 3: Random MAC breaking

Input: G: groups of burst sets, grouped by MAC address
t: distance threshold
d: a distance function

Returns: A: dictionary of aliases

A ← ∅
D ← ∅ // Database of signatures

foreach B ∈ G do
S ← signature(B)

dmin ← min(d(S,S ′) where S ′ ∈ D)
if dmin < t then
A[B.mac]← A[S ′.mac] // Alias

else
A[B.mac]← B.mac // New MAC address

end
D ← D ∪ S

end

return A

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 20 / 20



Algorithm

Algorithm 4: Random MAC breaking

Input: G: groups of burst sets, grouped by MAC address
t: distance threshold
d: a distance function

Returns: A: dictionary of aliases

A ← ∅
D ← ∅ // Database of signatures

foreach B ∈ G do
S ← signature(B)
dmin ← min(d(S,S ′) where S ′ ∈ D)

if dmin < t then
A[B.mac]← A[S ′.mac] // Alias

else
A[B.mac]← B.mac // New MAC address

end
D ← D ∪ S

end

return A

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 20 / 20



Algorithm

Algorithm 5: Random MAC breaking

Input: G: groups of burst sets, grouped by MAC address
t: distance threshold
d: a distance function

Returns: A: dictionary of aliases

A ← ∅
D ← ∅ // Database of signatures

foreach B ∈ G do
S ← signature(B)
dmin ← min(d(S,S ′) where S ′ ∈ D)
if dmin < t then
A[B.mac]← A[S ′.mac] // Alias

else
A[B.mac]← B.mac // New MAC address

end

D ← D ∪ S

end

return A

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 20 / 20



Algorithm

Algorithm 6: Random MAC breaking

Input: G: groups of burst sets, grouped by MAC address
t: distance threshold
d: a distance function

Returns: A: dictionary of aliases

A ← ∅
D ← ∅ // Database of signatures

foreach B ∈ G do
S ← signature(B)
dmin ← min(d(S,S ′) where S ′ ∈ D)
if dmin < t then
A[B.mac]← A[S ′.mac] // Alias

else
A[B.mac]← B.mac // New MAC address

end
D ← D ∪ S

end

return A

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec’16 - July 18th 2016 20 / 20


	Introduction
	Defeating randomization using timing
	Experiments and results
	Conclusion

