Defeating MAC Address Randomization Through

Timing Attacks

Célestin Matte!, Mathieu Cunche', Franck Rousseau®, Mathy

Vanhoef!!
T Univ Lyon, INSA Lyon, Inria, CITI, France, Région Rhéne-Alpes funding, ¥ Grenoble Institute of Technology, LIG, France,

TiMinds-Distrinet, KU Leuven

WiSec'16 - July 18t 2016

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t

@ Introduction

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t

Introduction - Wi-Fi service discovery

o Wi-Fi stations discover APs by sending probe request frames.
e Containing a unique identifier: the MAC address

Active mode
<())>> probe requests
é probe responses

AP

STA

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18" 2016 3/20

Introduction - Tracking

o What: getting the knowledge of a device's presence over time
@ Who: businesses, intelligence services, nasty neighbours, employers...
e Many retail tracking start-ups: Nomi, Euclid, Purple WiFi...

@ Privacy issue: no consent nor awareness

WATCHING YOU

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t

Introduction

MAC address randomization proposed to prevent tracking
o Being deployed in major OSes
e i0S 8, Android 6, Windows 10, Linux kernel 3.18

Is it enough to prevent tracking 7
No: Fingerprints can be built using the content of probe requests!
Is it even necessary?

We show that:

e Randomization can be defeated using an attack based on the timing of
probe requests
e Fingerprints built using this attack are consistent over time

IMathy Vanhoef et al. “Why MAC Address Randomization is not Enough: An Analysis of
Wi-Fi Network Discovery Mechanisms”. In: AsiaCCS. May 2016. URL:
https://hal.inria.fr/hal-01282900.

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18" 2016 5/20

https://hal.inria.fr/hal-01282900

MAC address randomization scheme

@ MAC address randomization: many different implementations
@ How often does the MAC address change?

e Linux: Every few bursts
e i0S > 9: every few bursts (2-4), sometimes for every burst

@ — Can we build a fingerprint with so few frames?

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18" 2016

Introduction - attacker model

o Attacker capabilities

e Monitoring wireless channels
e Single channel, single location

@ Attacker objectives

o Tracking devices
e = Group frames belonging to the same device

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t

© Defeating randomization using timing

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18" 2016 8/20

Terminology

@ Burst: group of probe requests sent within 10ms
@ Burst set: group of bursts sent with the same MAC address
o IFAT: Inter-Frame Arrival Time

‘ . Frame ‘
Burst
>

<10 ms IFAT

Time

\ 4

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. / Timing Attacks WiSec'16 - July 18t

Signature?

o Cut time into bins
@ For each bin, store percentage of IFATs + average IFAT value

1.0

0.8

0.6

Time

0.2]

0‘00 10 20 30 40 50 60

Percentage of probe requests

2Jason Franklin et al. “Passive Data Link Layer 802.11 Wireless Device Driver
Fingerprinting.”. In: Usenix Security. Vol. 6. 2006.

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. / Timing Attacks WiSec'16 - July 18t

Distances

@ We need to define distances between temporal distributions

@ D1: basic distance3

(P + 1))
Dlap =Y, (B = B+ b M — M)

@ D2: add inter-burst set arrival time

@ D3: hybrid distance between D1 and D2 (do not give strong credit
to inter-burst set arrival time)

3Jason Franklin et al. “Passive Data Link Layer 802.11 Wireless Device Driver
Fingerprinting.”. In: Usenix Security. Vol. 6. 2006.

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18" 2016 11/20

Algorithm

Matte, Cunche, usseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t

Algorithm

Time

Frame

A\ 4

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ imi WiSec'16 - July 18t

Algorithm

1 N 1
o8l 08 08|
0.6 0.6 0.6

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Randor imi WiSec'16 - July 18t

Algorithm

1 N 1.
o8l 08 08|
0.6 0.6 0.6

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ imi WiSec'16 - July 18t

Algorithm

1 N 1.
o8l 08 08|
0.6 0.6 0.6

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ imi WiSec'16 - July 18t

Algorithm

d<t?
1 N 1
o8l 08 08|
0.6 0.6 0.6

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Randor imi WiSec'16 - July 18t

© Experiments and results

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t 2016 13 /20

Experiments and results - dataset

@ Dataset: 120 000 probe requests sent by 550 devices @lab, 6 days

@ Simulate random MAC addresses

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18" 2016 14 /20

Experiments and results - metrics

@ Accuracy: ratio of correct decisions

@ TPR: number of burst sets from devices using random MAC
addresses correctly grouped together, over the number of burst sets
from devices using random MAC addresses

@ FPR: number of burst sets incorrectly grouped with burst sets from
other devices, over the total number of burst sets

Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t 2016 15 /20

Experiments and results - performance

o (after parameters selection)

1.0 T T T T

D1

0.6}, - |

0.4} L 1

True Positive Rate
\

0.2+ - 4

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure: ROC curve of the three distances, over the range of threshold values.

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. / Timing Attacks WiSec'16 - July 18" 2016 16 / 20

Results summary

(After parameters selection)

Table: Results of the attack with the best parameters and options.

Distance ‘ Accuracy ‘ TPR ‘ FPR ‘

D1 66.8% 74.1% | 24.3%
D2 77.2% 64.0% | 0.6%
D3 71.8% 75.2% | 17.5%

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t 2016 17 /20

@ Conclusion

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t 2016 18 /20

Countermeasures

e Changing the MAC address more often, every burst/frame
@ Random delay between probe and between bursts

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18" 2016 19 /20

Conclusion

Context:

@ MAC address randomization during Wi-Fi service discovery deployed
to prevent tracking

@ Is it enough?
We showed that:

@ Randomization can be defeated using an attack based on the timing
of probe requests

@ Fingerprints built using this attack are consistent over time
Discussion:

@ The content of the probe requests is not even necessary to track
devices

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t 2016 20/20

Experiments and results - distance metric evaluation

@ Distance of probe requests from same device vs. distance of probe
requests from different devices

1.0,

0.8

0.6

0.4

0.2

— Burst sets from the same device |
— Burst sets from different devices

Cumulative distribution of pairs of burst sets

Matte, Cunche, Rousseau, Vanhoef

0.5 1.0 1.5 2.0 25 3.0
Distance

Defeat MAC @ Random. Timing Attacks WiSec'16 - July 18" 2016

20 /20

Experiments and results - Stability

@ Select probe requests separated by chosen time difference

o Compute distance

Average distance

0
1min 5min 30min 1h 1d 10d
Time difference between burst sets

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t 2016 20/20

Algorithm

Algorithm 1: Random MAC breaking

Input: G: groups of burst sets, grouped by MAC address
t: distance threshold
d: a distance function

Returns: A: dictionary of aliases

A0
D+ // Database of signatures

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. Timing Attacks WiSec'16 - July 18t 2016 20/20

Algorithm

Algorithm 2: Random MAC breaking

Input: G: groups of burst sets, grouped by MAC address
t: distance threshold
d: a distance function

Returns: A: dictionary of aliases

A0
D+ // Database of signatures

foreach B € G do

end

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t 2016 20/20

Algorithm

Algorithm 3: Random MAC breaking

Input: G: groups of burst sets, grouped by MAC address
t: distance threshold
d: a distance function

Returns: A: dictionary of aliases

A0
D+ // Database of signatures

foreach B € G do
S « signature(B)

end

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t 2016 20/20

Algorithm

Algorithm 4: Random MAC breaking

Input: G: groups of burst sets, grouped by MAC address
t: distance threshold
d: a distance function
Returns: A: dictionary of aliases
A0
D+ // Database of signatures
foreach B € G do
S « signature(B)
dpmin < min(d(S,8’) where S’ € D)

end

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t

Algorithm

Algorithm 5: Random MAC breaking

Input: G: groups of burst sets, grouped by MAC address
t: distance threshold
d: a distance function

Returns: A: dictionary of aliases

A0

D+ // Database of signatures
foreach B € G do

S « signature(B)

dmin — min(d(S,S") where S’ € D)

if dmin <t then

| A[B.mac] + A[S".mac] // Alias
else

‘ A[B.mac] + B.mac // New MAC address
end

end

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t

Algorithm

Algorithm 6: Random MAC breaking

Input: G: groups of burst sets, grouped by MAC address
t: distance threshold
d: a distance function

Returns: A: dictionary of aliases

A0

D+ // Database of signatures
foreach B € G do

S « signature(B)

dpmin < min(d(S,8’) where S’ € D)

if dmin <t then

| A[B.mac] + A[S".mac] // Alias
else

‘ A[B.mac] + B.mac // New MAC address
end

D+~DUS

end

return A

Matte, Cunche, Rousseau, Vanhoef Defeat MAC @ Random. w/ Timing Attacks WiSec'16 - July 18t

	Introduction
	Defeating randomization using timing
	Experiments and results
	Conclusion

